top of page
Home: Welcome

Electric Power to the People

​Energy/Data Scientist at Oxford | Toyota

About Me

IMG_9399_edited.jpg

Masaki Adachi (足立 真輝)🇯🇵🇬🇧

I am a final-year DPhil student in Engineering Science (Information Engineering) in the Bayesian Exploration LabMachine Learning Reading Group at the University of Oxford under primary supervision of Prof Michael Osborne. My secondary advisor is Prof David Howey from Battery Intelligence Lab. I am also a Clarendon Scholar. Simultaneously, I am an assistant manager and data scientist at Toyota Motor Corporation. My research interest is in the interdisciplinary field between machine learning and energy science, applying Bayesian machine learning to the proliferation of electric vehicles and renewable energy.

Research Interests

  • ​Gaussian Process, Bayesian Quadrature, Bayesian Optimization, Probabilistic Numerics

  • Simulation-based inference, Battery modeling (physics-based, data-driven)

Contact me

​​Language

Click the button [EN] English [JA] Japanese

上部[EN]ボタンをJAに変更で日本語になります

Email

   masaki [atmark] robots.ox.ac.uk
Links

Home: About Me

Recent News

Publications

Peer-reviewed conference publication (6 first author papers, 2 co-author paper, 4 under review) 

  • M. Adachi*, W. Xu*, C.N. Jones M.A. Osborne (2024). "Principled Bayesian Optimization in Collaboration with Human Experts"Advances in Neural Information Processing Systems (NeurIPS Spotlight). *: equal contribution, acceptance rate 3% [arXiv] [GitHub]

  • M. Adachi*, S. Hayakawa*, M. Jørgensen, H. Oberhauser, M.A. Osborne (2022). "Fast Bayesian inference with batch Bayesian quadrature via kernel recombination"Advances in Neural Information Processing Systems (NeurIPS) 35, 16533 - 16547. *: equal contribution, acceptance rate 25.6%
    [Paper] [arXiv] [OpenReview] [GitHub] [Video]

  • M. Adachi, S. Hayakawa, M. Jørgensen, X. Wan, H. Oberhauser, M.A. Osborne (2023). "Adaptive Batch Sizes for Active Learning: A Probabilistic Numerics Approach", Artificial Intelligence and Statistics (AISTATS) 27 [arXiv][GitHub]acceptance rate 27.6%

  • M. Adachi, B. Planden, D.A. Howey, Mi.A. Osborne, S. Orbell, N. Ares, K. Muandet, S.L.Chau (2023). "Looping in the Human: Collaborative and Explainable Bayesian Optimization", Artificial Intelligence and Statistics (AISTATS) 27 [arXiv][GitHub]acceptance rate 27.6%

  • M. Adachi, Y. Kuhn, B. Horstmann, A. Latz, M. A. Osborne, D. A. Howey (2023). "Bayesian Model Selection of Lithium-Ion Battery Models via Bayesian Quadrature"The 22nd World Congress of the International Federation of Automatic Control (IFAC), 
    [Journal (Open access)][arXiv] [GitHub]

  • J. Ziomek, M. Adachi, M.A. Osborne, "Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal"Advances in Neural Information Processing Systems (NeurIPS), acceptance rate 25.8%

  • J. Ziomek, M. Adachi, M.A. Osborne, "Beyond Lengthscales: No-regret Bayesian Optimisation With Unknown Hyperparameters Of Any Type", [arXiv]

  • M. Adachi, S. Hayakawa, S. Hamid, M. Jørgensen, H. Oberhauser, M.A. Osborne (2023). "SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces", [arXiv[GitHub]

​Peer-reviewed journal articles (4 first author papers, 5 co-author papers)

  • J. Schaeffer, P. Gasper, E. G. Tamayo, R. Gasper, M. Adachi, J. P. G. Cardona, S. M. Bedoya, A. Bhutani, A. Schiek, R. Goodall, R. Findeisen, R. D. Braatz, S. Engelke, (2023) "Machine learning benchmarks for the classification of equivalent circuit models from solid-state electrochemical impedance spectra." Journal of Electrochemical Society, 170, 060512
    [Journal (Open access)
    ] [arXiv] [GitHub]

  • H. Yamahara, B. Feng, M. Seki, M. Adachi, et al., (2021). Flexoelectric Nanodomains in Rare-Earth Iron Garnet Thin Films under Strain Gradient, Communications Materials 2, 95
    [Paper]

  • W. Xiaohan, J. Billaud, I. Jerjen, F. Marone, Y. Ishihara, M. Adachi, Y. Adachi, C. Villevieille, Y. Kato (2019). Operando Visualization of Morphological Dynamics in All-Solid-State Batteries, Advanced Energy Materials 9, 1901547
    [Paper] [ChemRxiv]

  • M. Adachi., M. Seki, H. Yamahara, H. Nasu, H. Tabata. (2015). Long-term potentiation of magnonic synapses by photocontrolled spin current mimicked in reentrant spin-glass garnet ferrite Lu3Fe5-2xCoxSixO12 thin films. Applied Physics Express 8,4, 043002-1-4.
    [Paper]

  • M. Adachi., H. Matsui, M. Seki, H. Yamahara, H. Tabata. (2015). High-temperature terahertz absorption band in rare-earth gallium garnet. Physical Review B 91, 085118.
    [Paper]

  • H. Yamahara, M. Seki, M, Adachi, M. Takahashi, H. Nasu, K. Horiba, H. Kumigashira, H. Tabata. (2015). Spin-glass behaviors in carrier polarity controlled Fe3-xTixO4 semiconductor thin films. Applied Physics 118, 6, 063905
    [Paper]

  • M. Adachi., H. Yamahara, S. Kawabe, H. Matsui, H. Tabata. (2014). Strong optical reflection of rare-earth garnets in the terahertz regime by reststrahlen bands. Physical Review B 89, 205124.
    [Paper]

  • M. Seki, M. Takahashi, M, Adachi, H. Yamahara, H. Tabata. (2014). Fabrication and characterization of wüstite-based epitaxial thin films: p-type wide-gap oxide semiconductors composed of abundant elements. Applied Physics Letters 105, 112105
    [Pape]

Conference Presentations

  • Oral Talks (4 international and 7 domestic conference)

  • Posters Presentation (3 international and 1 domestic conference)

Talks

Invited Talks

  1. 29.02.2024, LAM Research, CA, USA, hosted by Dr. Joe Lu.

  2. 24.03.2023, Machine Learning Group hosted by Prof. Motonobu Kanagawa, EURECOM, France
    Machine Learning for Science via Fast Bayesian Optimisation and Quadrature [Slide]

  3. 09.03.2023, Data Science and AI Research Group hosted by Dr. Festus Adedoyin, Bournemouth University, UK.
  4. 06.03.2023, Machine and Human Intelligence research group hosted by Prof. Luigi Acerbi, University of Helsinki, Finland.

  5. 08.02.2023, Battery Modelling Webinar Series (BMWS) hosted by Carnegie Mellon University, 08.02.2023 [Slide]

  6. 04.03.2022, Toyota Research institute

Oral & Poster presentations

  1. 26.04.2023, Advanced Battery Power Conference, Balancing accuracy and complexity when selecting battery models to fit data [Poster]

  2. 22.03.2023, ModVal 2023, Fast uncertainty prediction in digital twins of lithium-ion batteries via Bayesian quadrature [Poster]

  3. 30.12.2022, NeurIPS 2022, Fast Bayesian inference with Batch Bayesian Quadrature via Kernel Recombination [Slide]

  4. 14.03.2022, ModVal 2022, Bayesian Quadrature for Fast Parameter Estimation of a Lithium-ion Battery Model [Slide]

unnamed-14.jpg
Picture 1.png

Working Experiences

Data Scientist
Toyota Motor Corporation

Data-driven design of next-generation batteries and motors for revolutionising electric vehicles:

  • intrapreneur based on intelligent experimental data analytics service

  • Machine learning analysis of manufacturing & experimental data (Python, R)

  • Deep learning model development (Pytorch)

  • Research on next-generation batteries, including materials discovery of new materials using machine learning

APRIL 2018 - PRESENT

Picture 2.png

​Embedded Researcher

University of Cambridge

Belonging to two laboratories at the same time:

  1. Machine Intelligence Laboratory, Department of Engineering (Host: Professor Roberto Cipolla)

  2. Electron Microscope Laboratory, Department of Materials Science & Metallurgy (Host: Professor Caterina Ducati)

Collaborating with Professor Clare Grey

FEBRUARY 2020 - JANUARY 2021

Picture 1.png

Energy Scientist
Toyota Motor Corporation

Simulation-Based Design of Lithium-Ion Battery for Hybrid Vehicles (4th Prius)

  • Development of simulation software

  • Robust designing of commercial lithium ion batteries (HV, PHV, and EV)

  • Experimental skills of lithium ion batteries (fabrication & measurements)

APRIL 2015 - MARCH 2018

Home: Experience
Image by Ben Seymour

Education

Home: Education
92ee936ffdec0749407abe674677b257.png

OCTOBER 2021 - PRESENT

DPhil in Machine Learning
University of Oxford

Clarendon Scholar (the crème de la crème of the incoming cohort)

Thesis: Fast Bayesian Inference with Quadrature for Battery Control

Primary supervisor: Professor Michael Osborne,

Secondary supervisor: Professor David Howey

UnivOfTokyo_mark.svg-2.png

APRIL 2013 - MARCH 2015

MEng in Electronic Engineering
University of Tokyo

Summa cum laude (ranked 1st in the cohort of 3,074 MEng graduates)

Department of Electrical Engineering and Information Systems,

Thesis title: Neuromorphic computing using frustrated magnetic thin films

Awarded President’s Prize (the best master’s thesis in the cohort)

​Superviser: Professor Hitoshi Tabata

Awards

Oxford Period (5 awards)

​Toyota Period (5 awards)

  • Best Research Award, Toyota Engineering Society, 2019

  • ​Best Research Award, Toyota Engineering Society, 2018

  • Most Invented Prize, Toyota Motor Corporation, 2017

  • Outstanding Youth Commendation, Toyota City Council, 2016

  • Most Invented Prize, Toyota Motor Corporation, 2016

Univ. Tokyo Period (6 awards)​​

Home: Text

Patent

Patent Issued (5 Patents)

  • Electrolyte of non-polar solvent and bipolar salt LiBPh4 for lithium ion batteries, Issued Jun 9, 2021  Patent JP06895079

  • Fluoride ion conductor PbSnF2 coated negative electrode for five volt lithium-ion batteries, Issued Apr 21, 2021, EPP3547409, DE3547409, FR3547409, GB3547409, US3547409

  • high-power lithium-ion batteries using cyclopentyl methyl ether of electrolyte, Issued Nov 26, 2020, JP06799783

  • Mixed Zeta potential oxides coated cathode materials for high power lithium ion batteries, Issued Nov 4, 2020, EPP3547419, DE3547419, FR3547419, GB3547419, US3547419

  • Magnetic-phase-transitional porous metal-complex nanocoils for high-power lithium-ion batteries, Issued Jun 14, 2019, JP06536908

Patent Filed (8 Patents)

  • Algorithm to efficiently discover the desired materials, Aug 2021

  • Algorithm to support the chemical elemental composition inference from crystal structural spectra, Aug 2021

  • Algorithm to support the new material discovery from spectral data mining, Aug 2021

  • Automatic spectral identification of materials using hierarchical deep metric learning, Aug 2021

  • Automatic inspection of hue/texture anomaly for car leathers based on camera images, Mar 2021

  • Nano-porous micro-structured silicide alloy framework for high-capacity lithium-ion solid-state batteries, Filed Mar 23, 2021, 202100588JP00

  • Novel cathode material Bi2FeCoO3F6 for high-capacity fluorine-ion batteries, Filed Sep 6, 2019, 201904863JP00

  • Si - NiTi nano-composite sub-nanoparticles for high-capacity lithium-ion solid-state batteries, Filed Feb 7, 2018, 180892JP

Home: Text

Enquiry

Thanks for submitting!

bottom of page